Ecological Pest Control in Cocoa in SEA – A Narrative

Brian J Wood

FAO Part Time – N Sumatra, 73-76 Sime Darby R&D, & Extension, 80s CPB Committee Sabah, etc 80s Advisor Sumatra Bioscience 2005-now

Valuable ecological categories

Pests in prevailing agronomic practice Key: virtually always a problem **Occasional:** usually scarce or absent, but flare up from time to time Induced: never common except if environmental disruption (generally pesticides)

ECOLOGICAL PESTICIDE CATEGORIES

Disruptive – tend to kill natural enemies more than pests. Usually –

- broad spectrum
- contact
- long residual

Selective – usually lack one of those characteristics Cocoa: induced pests can occur, but agroecosystem very stable. Several chemicals disruptive in other crops can be used.

MORE SPECIFICALLY -

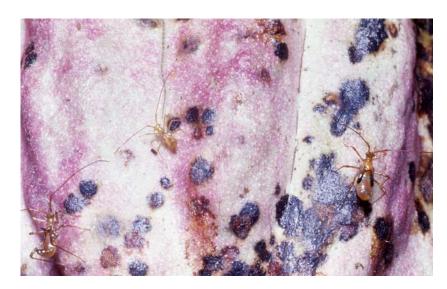
Severe induced flare ups in Sabah in late 1960s – endrin, dieldrin

Used without repercussion – BHC, synthetic pyrethroids

However – some disruption risk, residues, worker toxicity, cost, effectiveness.

Many reasons to minimise applications

COCOA KEY PESTS IN SEA


- Helopeltis spp
- Cocoa Pod Borer (CPB)
- Narrative account of my experience with control and R&D with these – toward minimising chemical usage
- Concluding: most effective approach with present techniques
- Areas where further R&D needed/could give best impact on procedures

Emphasise – an opinion

Helopeltis – theivora (= theobromae) in Sumatera, Borneo Peninsula Malaysia - bradyi in Java

Inevitable build up if treatment stops, to severe defoliation

Chemical against Helopeltis

Essentials for good kill –

- thorough blanket coverage
- at least one repeat application after two weeks (="treatment")

Best results – monitoring response

- Eg divide field into small plots (say 10x10 bushes at present spacing). When central (census) bush has +ve sign:-
- Treat any +ve plot on response (avge 1 1.5 treatments/year)
- Treat whole fields when threshold 25% or more plots +ve (avge 2 treatments/year)

Calendar spray – done eg at 2-monthly (6 treatments/year) but based on (false) idea that controls CPB also

SPRAY APPLICATION

Shoulder mistblower

Tractor drawn

Helicopter

HELOPELTIS CHEMICAL R&D NEEDS

- Test any available chemicals with potentially good profile
- Evaluate response system for pattern of plot infestation – random or variable subjectivity
- Spot spraying -frequent low dose directed to pods only (linked to assumption that controls CPB too, which needs testing)

HELOPELTIS - BIOLOGICAL

Black Ants – old method shown to be effective Must be supported properly. Not compatible with chemicals **Top: tending mealybugs Below:** nest in place

HELOPELTIS – BIOLOGICAL, R&D NEEDS

- Exact relationships eg repels the pest, or consumes it?
- Does it establish spontaneously especially in young plantings
- Mealybugs & virus transmission

HELOPELTIS - PHEROMONE

Attraction of males to virgin females recently demonstrated

R&D Needs

Use of such traps in monitoring Isolate any pheromone and synthesise

COCOA POD BORER

Regular Complete Harvesting (RCH)

Is effective to keep infestation (ie % pods infested) down to about 50% or less. *If done properly! Emphasise COMPLETE*This shown in trials and field practice
Trials may include a follow up harvester

Problem assessing CPB infestation

Sample – more often than not, by harvesting separately

Definition of what is lost or "wasted" not consistently defined, but refers to pods with unextractable beans

Usually, at around 50% infested, wasted is 1-2% BUT sometimes can be up to 25%

Excessive proportion wasted

Inspection shows many "unextractable" pods have low or no infestation.

Often *unripe* – "precautionary" harvesting. Loss from other causes included

IMPLICATIONS OF HIGH "WASTED"

- Big variation in subjective interpretation of severity of CPB (usually too high)
- Need repeatable representative sampling and assessment method.
- Two tier –
- infestation grade of pod, zero to heavy,
- with extractability separate within each (& some indication of non-CPB cause of unextractability)

R&D needs for RCH

- Harvester payment systems
- Higher infestation and waste in low crop periods
- Practicalities perceived as difficult (especially for smallholders). But is it more so than any other possibility that requires regular action/control??
- Nothing else effective yet found

CPB Chemical control

Lots of trials, nothing consistently effective yet found.

R&D NEEDS

•Stages should be susceptible, so what is the problem?

Recheck spot spraying

CPB Pheromone control

Early extensive studies in Sabah not positive

Recent trials

Many caught, no evident effect on infestation.

R&D needs Further work on field application, trap density

CPB Biological control

- Black ants: small consistent reduction (?)
- Egg parasites (Sabah): long term mass rearing project – no cost effective benefit
- Parasites of *Conopomorpha cramerella*: good natural control on other plants SEA. Some collection from outer regions & release (not much detail known). No dramatic effect, as would be expected if any potential.

Need – DNA confirmation of species status

CPB Biological control 2

Exotic parasites ?

- There may be effective parasites of pod boring caterpillars in S America and Africa.
- Would be adapted to cocoa environment unlike those in SEA.
- Several success stories exist of imported parasites controlling "unfamiliar" hosts.

CPB resistant cocoa control

There is some evidence of certain genotypes having resistance – specifically a thick sclerotic layer to hamper emergence of mature caterpillars.

R&D Needs

- •Look for consistent clonal difference in ratio entry to emergence holes
- Any other character
- •Long term as would need large scale testing.
- •But would be independent of specific ongoing control action

CPB other possible control methods

Sleeving – works but more effort than RCH, and ?cost effectiveness

"Rampassen" – intended to break cycle, but what advantage?

Light traps?

Conclusions 1

Keep bushes regularly in good shape

Helopeltis now Chemical

- Good coverage
- •Two week repeat
- •Response system, preferably small plots
 - •Avoid calendar if possible Biological
- •Ants proper attention; not compatible

Conclusions 2

Helopeltis R&D needs

Pheromones – continue

Ant/virus/mealybug linkage – investigate

Chemicals – test any new possibilities recheck "spot spraying"

Conclusions 3

CPB – CURRENT KNOWLEDGE

- Apply RCH
- Make sure assessment is representative of harvest, and cause of loss
- Payment system to encourage complete recovery

CPB – R&D NEEDS

- Search for parasites in S America & Africa
- Continue to look for resistance characters and test
- Continue work on chemicals, lures, and others